Recovery from arterial growth delay reduces penetrance of cardiovascular defects in mice deleted for the DiGeorge syndrome region.

نویسندگان

  • E A Lindsay
  • A Baldini
چکیده

Chromosome 22q11.2 heterozygous deletions cause the most common deletion syndrome, including the DiGeorge syndrome phenotype. Using a mouse model of this deletion (named Df1) we show that the aortic arch patterning defects that occur in heterozygously deleted mice (Df1/+) are associated with a differentiation impairment of vascular smooth muscle in the 4th pharyngeal arch arteries (PAAs) during early embryogenesis. Using molecular markers for neural crest, endothelial cells and vascular smooth muscle, we show that cardiac neural crest migration into the 4th arch and initial formation of the 4th PAAs are apparently normal in Df1/+ embryos, but affected vessels are growth-impaired and do not acquire vascular smooth muscle. As in humans, not all deleted mice present with cardiovascular defects at birth. However, we found, unexpectedly, that all Df1/+ embryos have abnormally small 4th PAAs during early embryogenesis. Many embryos later overcome this early defect, coincident with the appearance of vascular smooth muscle differentiation, and develop normally. Embryos born with aortic arch patterning defects probably represent a more severely affected group that fails to attain sufficient 4th PAA growth for normal remodelling of the PAA system. Our data indicate that Df1/+ embryos are able to overcome a localized arterial growth impairment and thereby reduce the penetrance of birth defects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic factors are major determinants of phenotypic variability in a mouse model of the DiGeorge/del22q11 syndromes.

The del22q11 syndrome is associated with a highly variable phenotype despite the uniformity of the chromosomal deletion that causes the disease in most patients. Df1/+ mice, which model del22q11, present with reduced penetrance of cardiovascular defects similar to those seen in deleted patients but not with other del22q11-like findings. The reduced penetrance of cardiovascular defects is caused...

متن کامل

Molecular Medicine Decreased Levels of Embryonic Retinoic Acid Synthesis Accelerate Recovery From Arterial Growth Delay in a Mouse Model of DiGeorge Syndrome

Rationale: Loss of Tbx1 and decrease of retinoic acid (RA) synthesis result in DiGeorge/velocardiofacial syndrome (DGS/VCFS)-like phenotypes in mouse models, including defects in septation of the outflow tract of the heart and anomalies of pharyngeal arch– derived structures including arteries of the head and neck, laryngeal–tracheal cartilage, and thymus/parathyroid. Wild-type levels of T-box ...

متن کامل

Cre-mediated excision of Fgf8 in the Tbx1 expression domain reveals a critical role for Fgf8 in cardiovascular development in the mouse.

Tbx1 has been implicated as a candidate gene responsible for defective pharyngeal arch remodeling in DiGeorge/Velocardiofacial syndrome. Tbx1(+/-) mice mimic aspects of the DiGeorge phenotype with variable penetrance, and null mice display severe pharyngeal hypoplasia. Here, we identify enhancer elements in the Tbx1 gene that are conserved through evolution and mediate tissue-specific expressio...

متن کامل

ELECTRONIC LETTER Assessment of association between variants and haplotypes of the remaining TBX1 gene and manifestations of congenital heart defects in 22q11.2 deletion patients

D eletion 22q11.2, commonly associated with DiGeorge or velocardiofacial syndrome (DGS/VCFS; MIM 188400), is a major cause of congenital heart disease, accounting for about 5% of all congenital heart defects in live births. However, the presence of the deletion does not allow one to predict the phenotype, as patients with a 22q11.2 deletion usually show a broad range of clinical variation despi...

متن کامل

Mice overexpressing genes from the 22q11 region deleted in velo-cardio-facial syndrome/DiGeorge syndrome have middle and inner ear defects.

Velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS) is a congenital anomaly disorder associated with hemizygous 22q11 deletions. We previously showed that bacterial artificial chromosome (BAC) transgenic mice overexpressing four transgenes, PNUTL1, (CDCrel-1), GP1B beta, TBX1 and WDR14, had reduced viability, cardiovascular malformations and thymus gland hypoplasia. Since these are hallmar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 10 9  شماره 

صفحات  -

تاریخ انتشار 2001